数学分析 CheatSheet
函数
$\tan^2x+1=\sec^2x$
$\sinh x = \frac{e^x}{2} - \frac{e^{-x}}{2}$
$\cosh x = \frac{e^x}{2} + \frac{e^{-x}}{2} = \sqrt{1+\sinh^2x}$
$sech(x) = \frac{2}{e^x + e^{-x}}$
$sin(x)cos(y) = \frac{sin(x+y) + sin(x-y)}{2}$
$sin(x)sin(y) = \frac{cos(x-y) - cos(x+y)}{2}$
$cos(x)cos(y) = \frac{cos(x-y) + cos(x+y)}{2}$
$sin(x) + sin(y) = 2sin(\frac{x+y}{2})cos(\frac{x-y}{2})$
$cos(x) + cos(y) = 2cos(\frac{x+y}{2})cos(\frac{x-y}{2})$
$cos(x) - cos(y) = -2sin(\frac{x+y}{2})cos(\frac{x-y}{2})$
微分
$\sin’x = \cos x$
$\cos’x = - \sin x$
$\tan’x = \sec^2x$
$\cot’x = - \csc^2x$
$\sec’x = \tan x \cdot \sec x$
$\csc’x = - \cot x \cdot \csc x$
$\cosh’ x = \sinh x$
$\sinh’ x = \cosh x$
$\tanh’ x = sech^2 x$
$arctanh(x)’ = \frac{1}{1-x^2}$
$arcsinh(x)’ = \frac{1}{\sqrt{1+x^2}}$
$arccosh(x)’ = \frac{1}{\sqrt{x-1}\sqrt{x+1}}$
有些地方^(-1)
表示不是-1
次方而是逆函数 $\tan^{-1} x = \arctan x$
$\arctan’x = \frac{1}{1+x^2}$
$arccot’x = -\frac{1}{1+x^2}$
$\arcsin’x = \frac{1}{\sqrt{1-x^2}}$